MATERIALS SCIENCE AND ENGINEERING, PH.D.

Dr. Sam Sun, Program Coordinator
(757) 823-0035/823-2993

The Ph.D. in Materials Science and Engineering (MSE) is an interdisciplinary program housed in the Department of Physics. Persons holding baccalaureate or Master of Science degrees in chemistry, physics, materials science, engineering, or related disciplines are eligible for admission.

The Ph.D. program addresses the critical technical workforce needs of industry, academia, and government laboratories in the Commonwealth and the nation for scientific and engineering leadership in the area of advanced nanostructured materials and engineering. The program will prepare highly trained technical professionals in the area of nanostructured materials science and engineering for the next generation photonic, electronic, magnetic materials and devices, and for renewable clean energy generation.

The Materials Science and Engineering (Ph.D.) program at Norfolk State University prepares students for careers in industry, federal or private research laboratories, and academia. The program transitions students from physical sciences, engineering and related fields into the discipline of advanced materials with special nanostructures and properties. The dissertation research component of the program is typically coordinated through the Center for Materials Research (CMR). However, research may also be conducted off campus through special programs at federal research facilities such as NASA Langley Research Center or DOE National Research Laboratories, with prior approval of the advisor and graduate program coordinator (GPC).

The MSE program is designed to provide students with fundamental knowledge, analytical skills, and research experience necessary to contribute significantly to federal and commercial research efforts in the forefront of Materials Science and Engineering in NSU's Center for Materials Research. Therefore, the curriculum includes an overview of MSE and its current research areas, and offers an in-depth study of advanced materials synthesis, characterization of macroscopic and microscopic physical properties, theoretical and computational modeling, and device engineering.

The curriculum of the program features technical core courses, professional development courses, elective courses, research, and a dissertation. The technical core courses establish baseline knowledge that brings students with diverse undergraduate background to a fundamental understanding of their new discipline. These courses impart a set of fundamental knowledge and skills to students with baccalaureate degrees in chemistry, physics, electrical engineering and related disciplines, and consequently, provide a new intellectual identity to those involved in the study and preparation of advanced materials.

Students may also enroll in a range of advanced Materials Science electives to prepare for the interdisciplinary needs of their dissertation research. This additional elective coursework is selected in consultation with the student's advisor and GPC. The professional development courses grant unique preparation to strengthen communication skills, and involve post-graduation planning and career-oriented training.

The program for students entering with a B.S. degree consists of 9 credit hours of technical core courses, 3 hours of professional development courses, a minimum of 18 (or more) hours of elective courses, 36 credit hours of research, and 9 credit hours for preparation and oral defense of the dissertation. A minimum of 75 credit hours must be taken at NSU.

The dissertation research component of the program will be coordinated through the Center for Materials Research. However, research may also be conducted on-campus through the Department of Computer Science or the Department of Engineering and off-campus through special programs at federal research facilities or at other research partner organizations with prior approval of the dissertation advisor and mentoring committee. All research conducted by doctoral students will be supervised by faculty teaching in the doctoral program and serving on dissertation committees.

All general policies and procedures of the Norfolk State University Graduate School are in effect, except those that are superseded by the following specific policies of the Ph.D. in Materials Science program. The program is governed by the policies of the NSU Graduate Council (GC), which meets regularly during the regular academic year. Between GC meetings, the program is administered by the Graduate Program Coordinator.

Academic Standards

In order to graduate, students must complete the curriculum with a minimum 3.0 grade point average on a 4.0 scale. Each student's progress is monitored by the Graduate Program Coordinator, with input from the student's research advisor.

The system of grading is as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Grade Points</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.0</td>
<td>Excellent</td>
</tr>
<tr>
<td>A-</td>
<td>3.70</td>
<td>Excellent</td>
</tr>
<tr>
<td>B+</td>
<td>3.30</td>
<td>Good</td>
</tr>
<tr>
<td>B</td>
<td>3.00</td>
<td>Satisfactory</td>
</tr>
</tbody>
</table>

* Course must be repeated to fulfill graduation requirement.

Students with a GPA of 3.00 or higher are considered to be in good academic standing. In order to receive graduate teaching assistantships (GTAs), students must generally be in good academic standing, and be making normal progress toward degree completion.

Failure to maintain the required 3.0 GPA may result in probationary status or suspension from the program as outlined below.

Students on probationary status generally do not receive renewals of graduate teaching assistantships and may not be eligible for university tuition grants. Students who were admitted on a provisional basis will not be changed to regular status unless the required 3.0 GPA is obtained.

Students placed on suspension may not be permitted to enroll in additional courses in the Materials Science and Engineering program until reinstatement is granted by the appropriate MSE program committee. The request for reinstatement should include explanation of mitigating circumstances surrounding past academic performance and/or justification for predicting future success in the program if reinstatement is granted. The MSE program committee will review the request and may interview the suspended student prior to making a final recommendation. The committee may require successful completion of relevant undergraduate courses as a precondition for reinstatement.
Center for Materials Research

CMR was established in 1992 to coordinate the ongoing interdisciplinary research in polymer, biophotonic, and nanomaterials. The CMR is located in the Marie V. McDemmond Center for Applied Research on the NSU Campus, where the following research laboratories are located: Micro- and Nanotechnology Center (6,000-sqft cleanroom), Materials Characterization Laboratories (electron transmission, scanning, and atomic force microscopes, scanning probe microscope, surface analysis system: LEED, XPS, and AES, X-ray diffraction and fluorescence, IR and UV-Vis), Laser Laboratories for spectroscopy and high speed dynamics, Nuclear Magnetic and Electron Spin Resonance (NMR and ESR) Laboratories, Organic/Polymer Synthesis and Characterization Laboratories, Neuronal Engineering and Nanoelectronic labs, Crystal Physics and Quantum Electronic Labs, Biomaterials and Toxicology Labs, Thin Film Processing and the Device Fabrication Labs.

Curriculum

Minimum Degree Requirements

All students are required to complete a total of 75 credit hours, including 36 hours of research and 9 hours of dissertation credits.

This requirement includes the following 12 semester hours of core courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 600</td>
<td>Materials Science & Engineering Seminar I</td>
<td>1</td>
</tr>
<tr>
<td>MSE 601</td>
<td>Materials Science & Engineer Seminar II</td>
<td>1</td>
</tr>
<tr>
<td>MSE 605</td>
<td>Ethics of Scientific Research & Professionalism</td>
<td>1</td>
</tr>
</tbody>
</table>

Technical Electives

Select nine (9) credit hours of approved technical core electives. Additional substitutions may also be approved. (This list may not be complete or updated)

- CHM 545 Mathematical Method
- PHY 580 Quantum Mechanics for Materials Science
- MSE 575 Basic Instrumentation for Material Science
- MSE 607 Materials for Nanotechnology
- MSE 635 Optical Materials
- MSE 660 Organic Optoelectronic Materials & Devices
- MSE 704 Thin Film Phenomena

Admissions

Requirements

The requirements for admission to the Ph.D. Program in Materials Science and Engineering are as follows:

1. A bachelor's degree in chemistry, physics, materials science, engineering or a related field from a regionally accredited institution and have a 3.0 grade point average on a 4.0 scale.
2. Submission of a complete application including the following:
 a. Completed Application Forms
 b. Application Fee
 c. Statement of Purpose of at least 500 words explaining how the program will advance your career goals
 d. Updated Resume
 e. GRE Scores
 f. At least three Letters of Recommendation from persons who are qualified to evaluate your academic and research experience
 g. Official Transcripts from all undergraduate institutions attended. Unofficial transcripts will be accepted for admission decisions but final official transcripts are required for enrollment if
accepted. NSU undergraduate students may submit final unofficial transcripts for enrollment. Foreign transcripts need to be evaluated/translated/certified by an approved third party evaluator such as the World Educational Services (WES).

h. TOEFL scores for international applicants, minimum score of 79 (Internet) or 550 (Paper).

Admission to the Ph.D. program in Materials Science and Engineering may be regular, provisional, or conditional.

Provisional admission may be granted to applicants who do not meet the criteria for regular admission. Upon the completion of nine (9) or more graduate credits with a 3.0 or better, the student may petition the Materials Science Graduate Committee for conversion from provisional to regular status.

Non-degree Status
Non-degree status may be granted to a person who has a baccalaureate degree in an appropriate field and who wishes to take particular courses without pursuing a graduate degree. The courses may be taken on a credit or a non-credit basis. Generally, a maximum of nine credit hours with a 3.0 average or above may be applied toward degree requirements if the non-degree student is subsequently admitted to the Ph.D. in Materials Science and Engineering program. Non-degree students are ineligible for fellowships or assistantships administered by the Graduate Committee.

Transfer Credits
The program for students who enter the program after completion of a M.S. in Materials Science or related disciplines, from NSU or any other accredited physical science or engineering program, consists of a minimum of 3 hours of professional development courses, 6 hours of research and 9 hours in additional elective courses, 27 credit hours of Ph.D. research, and 9 credit hours for preparation and oral defense of the dissertation. A minimum of 54 credit hours must be taken at NSU. Transfer students should consult the Program Coordinator for further information regarding transfer credits.

Residence Requirements
Candidates for the Ph.D. in Materials Science and Engineering must be enrolled at Norfolk State University for a minimum of six semesters prior to graduation. Dissertation research must be conducted under the supervision of a regular or adjunct NSU faculty member approved by the appropriate Materials Science and Engineering Graduate Committee.

Re-Admission
A student planning to interrupt his/her approved plan of study should consult his/her advisor. In some cases, continuous registration may be required by the Graduate School, or the filing of a "continuous matriculation" form may be required. Re-admission to the program after an absence of a semester or longer is not automatic and requires the filing of an admission application.